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Empirical determination of thermal expansion 
in insulators with no experimental input 

A. R. R U F F A  
Naval Research Laboratory, Washington, D.C. 20375, USA 

The localized-continuum model of thermal expansion which was applied to insulators in 
the previous paper is further refined by empirical means to allow the calculation of 
thermal expansion in insulating materials with no input other than the chemical formula. 
Estimation of the Madelung constants is made by using the empirical methods of 
Kapustinsky and Templeton while the atomic nearest-neighbour distances are estimated 
by using atomic radii tables. Approximate values of repulsive exponents are obtained by 
using an empirical scaling rule and a table of monovalent repulsive exponents. The Debye 
temperature is approximated by a simple formula involving the estimated parameters of 
the interatomic potential. Using this approach, thermal expansion is estimated in a group 
of binary and complex ternary materials and a group of complex salts. The agreement 
with experiment is generally good, although the elimination of experimental input 
appears to increase the probable error in the calculations by 15% to 20%. The results 
indicate that this approach is capable of predicting with reasonable accuracy the thermal 
expansion in a wide range of insulating materials with no experimental input and no 
adjustable parameters. The limitations of this method for certain cases is also discussed. 

1. Introduction 
Because such a wide variety of insulating and 
ceramic materials have been and potentially could 
be fabricated in the laboratory, it would be quite 
desirable to be able to estimate, in advance, the 
various physical properties of each compound. 
This is particularly true of the thermal expansion, 
which is one of the most basic properties of 
materials. Ideally, such an estimation procedure 
should require no knowledge of other properties 
of the material in question, since these may be no 
better known than the thermal expansion, itself. 

In the previous paper [ 1 ], a localized-continuum 
model of thermal expansion was presented 
which showed promise as a means of calculating 
the thermal expansion of a wide range of insulating 
materials. The method as it was presented, how- 
ever, required the knowledge of some experimental 
properties, principally the detailed crystal struc- 
ture, the volume compressibility, and the Debye 
temperature. In this paper, this model will be 
explored further, to further test its range of appli- 
cability, and to further refine its requirements so 

2268 

that no experimental input is necessary. The 
second requirement is in many cases a necessary 
prelude to pursuing the first, since in most materials, 
at least some of the experimental data needed are 
unavailable. An empirical procedure will be 
presented for estimating each of the previously 
required experimental quantities, and the average 
thermal expansion for both binary and complex 
materials will be estimated by this approach. As 
we will see, the relative accuracy of this method 
suggests it has general applicability for a wide 
range of materials. 

2. Empirical determination of 
experimental quantities 

The experimentally determined quantities which 
were required in the previous paper for calculating 
the thermal expansion were the detailed crystal 
structure, the volume compressibility, and the 
Debye temperature. In this section, we set forth 
empirical procedures for determining the required 
quantities without recourse to experimental infor- 
mation. Basically the approach to be used is as 
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follows. The crystal structure was necessary to 
determine the Madelung constant and the atomic 
nearest-neighbour distance. }towever, both of these 
quantities can be estimated with some accuracy 
without knowledge of the crystal structure. The 
volume compressibility was needed to determine 
the repulsive exponent, but this quantity can be 
estimated directly by empirical means. Finally the 
Debye temperature can be approximated by a 
simple formula involving the parameters of the 
potential well estimated from the above procedures. 
We will now discuss each of these procedures in 
some detail. 

2.1. Es t imat ion  of  the  Madetung cons t an t  
As is well known, calculation of the Madelung 
constant requires a mathematical summation of 
the Coulomb potentials associated with each 
atomic position in the crystal lattice. However, 
Kapustinsky [2] discovered some years ago that 
a simple empirical formula can be used to predict 
Madelung constants. The simple relation was sub- 
sequently examined in more detail by Templeton 
[3]. Kapustinsky pointed out that a quantity, 
which has subsequently been referred to as the 
reduced Madelung constant, is approximately 
constant for most crystal structures. This quantity, 
which we will call Mr, corresponds to the Madelung 
constant per bond in the crystal and is related 
to the actual Madelung constant M in a binary 
material by the relation 

Mr = 2M(rn)/ZaZen (1) 

where z a and z c are the anion and cation charge 
numbers, n is the number of atoms per molecule, 
and the Madetung constant is expressed in terms 
of  the shortest nearest-neighbour distance. The 
calculated values of Mr for various crystal struc- 
tures have been found to range from 1.48 to 1.76. 
Although Templeton demonstrated that by taking 
into account local symmetry, the above formula 
could be modified to predict Madelung constants 
for many structures to within 1% or so, it is 
obvious that by taking the mean or median value 
of M, of 1.6 or 1.64, the Madelung constant for 
any reasonable structure can be predicted to 
within + 10%, without any knowledge of crystal 
structure. Templeton generalized the above 
formula for application to ternary and higher 
order materials by replacing z,~zcn in the above 
formula by the sum of squares of the charge 
numbers of each atom in the molecule. This 

formula was found to work with comparable 
success in higher order compounds. 

The nearest-neighbour distance can be esti- 
mated to within a few percent by using Slater's 
atomic radii table [4]. Combining this with the 
Kapustinsky-Templeton estimate for the Madelung 
constant, the Madelung energy can be estimated 
within a maximum error of about 15% without 
any knowledge of crystal structure. 

2.2. Estimation of the repulsive exponent 
In the previous paper, a simple scaling rule was 
introduced to estimate repulsive exponents which 
agreed welt with available experimental results. 
Given the monovalent repulsive exponents ml for 
the alkali halides, the corresponding repulsive 
exponent for a multivalent compound having 
average valence Q is given by the relation 

rnQ -- t = (ml -- 1)/Q (2) 

It is a simple matter to extend this idea to all atoms 
of the periodic table by setting the monovalent 
exponents for any cation-anion pair (or atomic 
pair) equal to the corresponding exponent for 
the alkali halide associated with the same two rows 
of  the periodic table. The actual exponent is then 
determined from the above scaling rule. For 
example, the value of rn~ for MgO is the same as 
that for NaF, while the actual repulsive exponent 
for MgO is determined from the scaling rule to 
be (mr~fgo -- t)  = ( rnNff -  1)/2. This simple pro- 
cedure has several advantages. First, it is easy to 
apply to all atomic pairs. Second, it accounts for 
the observed tendency of cations in the b groups 
of the period table to have higher values of 
exponents than cations in the a groups having simi- 
lar ionic radii. For example, Cu § has the same ionic 
radius as Na § but is generally associated with a 
higher repulsive exponent. 

Table I lists the monovalent repulsive exponents 
for each palrwise combination of rows of the 
periodic table. Most of the values were taken from 
the experimental determinations of Slater [5] for 
the alkali halides. The rest were either interpolated 
from these values or determined from the Born- 
Mayer formula for the repulsive energy. In the 
Born-Mayer formulation of the repulsive energy, 
the quantity rn/p appears rather than the repulsive 
exponent rn, where r ,  is again the nearest-neighbour 
distance and p was found to be nearly constant 
for the alkali halides and equal to 0.345 x 10 -s cm. 
This formula yields values which agree well with 
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T A B L E I Effective monovatent repulsive exponents 
for nearest-neighbour atomic pairs 

Periods* m ~ . . . . . . . .  Periods* m t 
, ,,,, ,,,, i L , , , ,  

II - II 5.9 V - II 8 .4  r 
II - III 8.0 V III 9.9 t 
II - IV  8.7 V -  IV t 0 . 0  
II - V 9 .2  ? V - V 1t,0 

Il l  - II 7.4 t VI - II 8.75 
III - III 9.1 V I  - III 1 0 . 3 *  
III - IV 9 .5  VI  - IV 1 0 . 8 '  
III - V 10 .0  t VI  - V 11.5' 

tV - II 7.9 VII - II 8,9* 
IV - III 9,7 VII - Ill  t0,5* 
IV - IV 10.0 Vtt - IV 11.0* 
IV - V 10.5 VII - V 11.6 * 

*The fkst roman numeral refers to the period (row) for 
the atoms on the left side of the periodic table, the second 
to that of the atomson the right side of the periodic table, 

?interpolated from Slater exponents for the alkali hatides, 

*calculated from rn = rn/P. 

the  Slater repulsive exponents  when the cations 
are large, insuring good ca t i on -an ion  contact .  For  

this reason, the values in the table for the largest 
cations were obtained from this formula. In the 
case of  the smaller cations where the nearest- 

firm an ion -ca t i on  contact ,  the interpolated values 

were considered more reliable. The repulsive 

exponents  obtained from this table generally agree 
fairly well with those obtained from available 
experimental  compressibilities. 

2 .3 ,  E s t i m a t i o n  o f  t h e  D e b y e  t e m p e r a t u r e  
In the previous paper,  a simple formula for  the 
cutoff  frequency in a linear atomic chain was 
compared with the experimental  Debye tempera- 
tures for various materials as a check on the 
potent ial  well parameters used in the  thermal 
expansion calculations. The formula was found 
to  agree reasonably well wi th  the experimental  
Debye temperatures in those materials where it is 
available, This process can obviously be reversed 

and the approximate formula used to  estimate 
the Debye temperatures for the large number  

o f  materials where no experimental  values are 
available. The approximate  formula 

0~, = (2h /k )a (201~)  lr2 (3) 

involves only the two  parameters o f  the Morse 
potential ,  which can be obtained from the above 
empirical procedures, and the an ion -ca t i on  
reduced mass /~. Consequently, 0 D can be esti- 
mated  from this formula with no knowledge other 

neighbour distance is less reliably associated with  ~ than the chemical formula o f  the compound.  In 

T A B L E I I  Calculated versus expelimental thermal expansion coeffieients for various binary compounds 
. . . . . . . . . . . . . .  . . . . . . .  , u , , .  . . . . .  , ,  ,,,, i . , , , ,  , , ,  , , ,  , , , , , . , , , ,  

O gD(K) T(K) aeale(X 106 K -1 ) ae~l~ ( X 106 K -1 ) 

BeO* 2 1461 293 5.5 6.3 
1600 14.7 12,8 

CaO 2 543 293 14.5 1 t,2 
1000 17.5 13.6 

UP 3 410 293 8,3 7,8 
1000 9.3 9.6 

UN 3 663 293 7.0 7.4 
t000 8.9 10,4 

US 2 335 293 15~0 i l l  
1000 16.5 12,9 

BN 3 1587 293 2.4 1,8 
1000 6.7 5,9 

BP 3 1187 293 3.7 2,9 
1000 7.0 5.4 

WC* 4 1042 293 2,9 3,7 
t000 4.9 5,1 

TiN 3 867 293 5.6 6.3 
1000 8.1 10.0 

*polyerystalline samples+ 
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most cases, the formula gives a value which is 
within 20% of the experimental Debye tempera- 
ture when it is available for comparison. 

3. Calculation of thermal expansion in 
simple binary compounds 

Using the above empirical procedures, it is a 
straightforward calculation to determine the 
thermal expansion coefficients of simple binary 
compounds. In the Kapustinsky Equation 1, Mr is 
set equal to 1.64 in all cases to give a maxinmm 
error in the Madelung constant of about 10%, 
regardless of crystal structure. Using Equations 1, 
2 along with Table I, and Equation 3 in conjunc- 
tion with the equations of the previous paper, the 
thermal expansion coefficients of a group of 
binary compounds have been determined, with 
the results listed in Table II. Listed in the table 
are the values of Q which are used in Equation 2 
in conjunction with Table I for determining the 
repulsive exponents, the estimated Debye tem- 
peratures as determined from Equation 3, and the 
calculated and observed coefficients of thermal 
expansion at room temperature and an elevated 
temperature which is a large fraction of the 
melting temperature for each compound. The 
observed coefficients of thermal expansion were 
taken from the compilation of Touloukian et aL 
[61. 

The probable error in the calculations appears 
to be about 25%, which is between 15% to 20% 
higher than the probable error in the calculations 
in the previous paper which used experimental 
information. This is about the penalty which is 
to be expected in using the estimation methods 
discussed above rather than experimentally deter- 
mined quantities. Considering, however, the fact 
that the calculated values are arrived at with no 
experimental input and no adjustable parameters, 
the probable error is quite reasonable. The relative 
errors in the calculated values at the two tempera- 
tures is a measure of the accm:acy of the calculated 
Debye temperature. A significant difference in 
the percentage errors for the two temperatures is 
an indication of a significant error in 0D2 The 
tabulated results appear to indicate that the 
values of 0o are reasonably accurate in all cases. 
Since an average thermal expansion is being calcu- 
lated here, the values of o~ for polycrystaUine 
samples of the noncubic crystals are compared 
with the calculated values. As was found in the 
previous paper, crystal anisotropy does not appear 

to significantly diminish the agreement between 
calculated and observed values. 

4. Calculation of thermal expansion in 
higher order compounds 

The relative success of the calculation for the 
binary materials suggests that this procedure 
should also work well for higher order compounds. 
The procedure is applicable to higher order 
compounds with only minor modifications. First, 
the Templeton generalization of the Kapustinsky 
formula for the Madelung constant must be used. If 
Mr is set equal to 1.6 in all cases, the Templeton- 
Kapustinsky Madelung constant is given by 

M(r.) = 0.8 ~ z~ (4) 
i 

for all crystal structures. There is insufficient 
information at present to know whether this 
formula will be accurate to -+ 10% for all possible 
complex structures. However, comparisons made 
so far appear to indicate that Equation 4 has an 
accuracy for complex compounds comparable to 
that of Equation 1 for the binary" compounds. 
The sum in Equation 4 is generally made over all 
atoms in the simplest chemical fommla. Therefore, 
the use of Equation 4 in the Madelung energy does 
not require as a factor either the number of atoms 
per molecule or the least common divisor of the 
atomic valences. 

Since the use of Equation 4 involves a sum over 
all atoms in the molecular group, the nearest- 
neighbour distance in the Madelung energy must be 
replaced by a weighted average nearest-neighbour 
distance. Similarly, a weighted average repulsive 
exponent must be computed. The procedure 
discussed above for binary compounds is repeated 
for each possible nearest-neighbour atomic pair, 
and the average is calculated by  weighting the 
result for each pair according to its frequency in 
the chemical formula. Finally, the binary reduced 
mass in Equation 3 is replaced by a weighted 
average nearest-neighbour reduced mass. 

This procedure has been applied to a calcu- 
lation of the thermal expansion coefficients in a 
group of complex oxides and the results are listed 
in Table IIl. In this case, the effective repulsive 
exponent m o is listed rather than Q, and the 
experimental thermal expansion coefficients were 
once again taken from reference [6]. The calcu- 
lated and observed values agree about as well as 
did the values for the binary materials. This 
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T A B L E III Caluculated versus experimental thermal expansion coefficients for some complex oxide compounds 

mo gD (K) T(K) C%alc (X l0 s K -1 ) C~ex p (X 104 K -a ) 

BaTi409 3.8 766 293 6.9 7.4 
1000 9.3 10.0 

Ca~ A12 O~ 4.1 685 293 10.5 6.8 
1000 13.6 11.6 

CaA1204 3.9 782 293 8.6 4.7 
1000 11.9 7.8 

MgA12 O 4 3.8 845 293 7.9 7.0 
1000 11.5 9.8 

Mg~ SiO 4 3.9 870 293 7.4 9.0 
1000 10.8 12.8 

MgSiO 3 3.7 945 293 6.1 8.6 
1000 9.5 13.9 

BaTiO 3 * 4.1 647 293 8.8 6.3 
1000 11.1 14.7 

SrTiO~ 4.0 670 293 8.6 10.3 
1000 11.1 12.0 

A12 TiO~ * 3.6 882 293 6.4 8.1 
1000 9.6 9.7 

*polycrystalline samples. 

implies that the generalization of the estimation 
procedures to higher order compounds is about as 
accurate as are the procedures for the binary 
compounds. A particularly interesting result is 
that for Al2TiOs which is a highly anisotropic 
crystal. In spite of this, the calculated average 
coefficient of  thermal expansion agrees well with 
the observed value for polycrystalline samples, 
indicating once again that crystalline anisotropy 
does not significantly affect the accuracy of the 
calculation. These results indicate this procedure is 
applicable to a wide range ofinsulatingcompounds 
having almost any degree of molecular and/or 
crystalline complexity. 

5. Calculation of thermal expansion 
in complex salts 

Complex salts represent another category of 
insulating material whose thermal expansion can 
be estimated rather effectively by a modification 
of this technique. A complex salt is composed of a 
positively charged cation and a complex molecular 
radical having a negative charge. Since dissociation 
normally takes place between the two charged 
entities, most of the thermal expansion involves 
the vibration between them. Because the thermal 
expansion in these materials can be so large and 

is potentially so variable, they are particularly 
interesting materials to apply this procedure to. 

The simplest way to estimate the thermal 
expansion in these materials is to ignore the 
internal vibrational effects in the complex radical 
and attribute the thermal expansion solely to the 
interionic vibrations. The complex radical is then 
looked upon as a large, massive, negatively charged 
ion. Although one could estimate the size of the 
complex radical by purely geometric means using 
atomic radii tables, for illustrative purposes, we 
will use the idea of the thermochemical radius 
reviewed in detail by Waddington [7]. The basic 
idea here is that if the dissociation energy of a 
binary complex salt in which the chemical formula 
includes one cation and one complex radical is 
known from experimental determination, then the 
thermochemical radius of the complex radical can 
be deduced using the Goldschmidt ionic radius for 
the cation and the Born-Mayer energy formula 
for the alkali halides. Thus, the Coulomb energy 
and the repulsive energy, and from this the repul- 
sive exponent, can be immediately deduced. The 
thermochemical radii for a large number of complex 
radicals have been obtained in this way and are 
listed by Waddington. 

Table 1V lists the results of calculations on 
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T A B L E IV Calculated versus experimental thermal expansion coefficients for some complex salts 

mo ~D(K) T(K) aeale(X 106 K -t) ae~(X 106 K-1) 

NaC103 8.6 246 293 52.1 43.0 
500 55.8 59.8 

NaBrO 3 8.4 243 293 51.6 37.6 
500 55.1 45.9 

NalO 4 * 10.1 207 293 54.1 37 
450 57.2 52 

NaNO 3 * 8.3 262 293 51.7 40 
450 54.8 67 

CaCO 3 * 8.4 433 293 11.4 4.0 
700 12.8 8.6 

MnCO 3 * 7.8 423 293 11.2 9.3 
500 12.1 10.9 

*polycrystalline samples. 

some of these compounds using this method. The 
experimental values were once again taken from 
reference [6]. As can be seen from the results, the 
high temperature coefficients calculated by this 
procedure are fairly accurate, lending some support 
to the approximation that the thermal expansion 
arises primarily from the interionic vibrations in 
these materials. However, the room temperature 
results are in considerably poorer agreement with 
experiment. This is due to the fact that the calcu- 
lated Debye temperatures are generally too low. 
Although this is partly a result of not including the 
internal vibrational degrees of freedom in the 
calculation which would of course contribute to 
the Debye temperature, the primary reason for the 
discrepancy is the treatment of the negatively 
charged radical as a massive ion, which leads to 
a significant underestimation of the Debye tem- 
perature. A better approximation might be to take 
the average reduced mass of the atoms in the 
complex radical rather than the reduced mass 
associated with the massive whole. Aside from 
this deficiency, these calculations appear to agree 
with experiment about as well as the previous 
ones, indicating that this approach is capable of 
handling a wide range of material types and magni- 
tudes of the thermal expansion coefficient, since 
the coefficients for some of these compounds are 
in some cases two orders of  magnitude higher than 
for many high temperature compounds. Also, as 
was the case in previous calculations, the accuracy 
does not appear to have been effected by some- 
times large crystalline anisotropies. 

6. Limitations to the model 
The localized-continuum model of thermal expan- 
sion, which was presented in the previous paper 
and further refined in this one, appears capable, 
based on experience so far, of predicting thermal 
expansion with reasonable accuracy in about 90% 
of  insulating materials. In the other 10% of the 
cases, the errors may approach 100%, and there 
appears to be two different reasons for this. In 
most of these anomalous cases, an unusual local 
symmetry or coordination number often brings 
about a significant change in the thermal expansion. 
Slack [8] has obtained considerable empirical 
evidence that anomalous coordination numbers 
in complex crystal structures can be correlated 
with anomalous thermal expansion coefficients. 
Clearly, a model which uses only the chemical 
formula cannot account for these anomalies. 
However, a modification of the procedure based 
on local coordination numbers in the absence of 
experimentally determined compressibilities is 
certainly feasible. Since the repulsive exponents 
are estimated for "normal" coordination numbers 
associated with a given valence, modified exponents 
associated with unusual coordination numbers can 
easily be determined. Such modifications appear 
to account for the thermal expansion anomalies in 
the few cases where detailed structural information 
is available. 

In a few percent of the cases encountered, 
anomalous temperature dependence of the thermal 
expansion results from the behaviour of one or 
more normal modes which produce a contraction 
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in the material with rising temperature. This 
happens rather dramatically, for example, in ZnS 
and CdS, where at low temperatures, the coef- 
ficient of thermal expansion is strongly negative. 
As a result, this model predicts a much higher 
coefficient than is observed, since the calculated 
coefficient is a monotonically increasing function 
of temperature. Negative thermal expansion is 
commonly observed in solids with open structures, 
particularly those which have small values of one 
or more of the shear moduli. It is generally believed 
to arise from a relatively high density of transverse 
modes of vibration which are possible in such open 
structures. Such normal modes, by counteracting 
the effects of all the others, can produce in some 
extreme cases a very low thermal expansion over 
extended temperature ranges. This model in its 
present form cannot account for such behaviour 
without modification. Accounting for this type of 
behaviour requires that the properties of such 
normal modes be specifically incorporated in 
the model of thermal expansion. Interestingly, 
however, the model used in this paper, which gives 
what might be called an "average" or "expected" 
thermal expansion for a given material, can usually 
pinpoint the nature of such anomalies by examining 
the temperature dependence of the difference 
between the calculated and observed fhermal 
expansion coefficients. 

7. Conclusions 
The calculations presented in this paper have 
demonstrated that the localized-continuum model 
of thermal expansion, which was initially applied 
to insulators in the previous paper, is capable 
with various empirical techniques of predicting 

with reasonable accuracy the thermal expansion 
in a wide variety of insulating materials with no 
experimental input and no adjustable parameters. 
In the 10% or so of the cases where the expansion 
predicted by the model are in poor agreement 
with experimental, structural or normal mode 
anomalies usually exist whose nature can usually 
be elucidated by comparing the predicted results 
with experiment. 

Although the theory is based upon an idealized 
Morse interatomic potential, its connection with 
real materials is based upon a series of empirical 
rules based in turn upon a potential function 
associated with the ionic model. Since this approach 
appears to work well regardless of bond type, the 
basic theoretical question of why the bottom of the 
thermal potential in solids is largely independent 
of bond type remains to be answered. 
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